Oncogenic Ras blocks anoikis by activation of a novel effector pathway independent of phosphatidylinositol 3-kinase.
نویسندگان
چکیده
Activated Ras, but not Raf, causes transformation of RIE-1 rat intestinal epithelial cells, demonstrating the importance of Raf-independent effector signaling in mediating Ras transformation. To further assess the contribution of Raf-dependent and Raf-independent function in oncogenic Ras transformation, we evaluated the mechanism by which oncogenic Ras blocks suspension-induced apoptosis, or anoikis, of RIE-1 cells. We determined that oncogenic versions of H-, K-, and N-Ras, as well as the Ras-related proteins TC21 and R-Ras, protected RIE-1 cells from anoikis. Surprisingly, our analyses of Ras effector domain mutants or constitutively activated effectors indicated that activation of Raf-1, phosphatidylinositol 3-kinase (PI3K), or RalGDS alone is not sufficient to promote Ras inhibition of anoikis. Treatment of Ras-transformed cells with the U0126 MEK inhibitor caused partial reversion to an anoikis-sensitive state, indicating that extracellular signal-regulated kinase activation contributes to inhibition of anoikis. Unexpectedly, oncogenic Ras failed to activate Akt, and treatment of Ras-transformed RIE-1 cells with the LY294002 PI3K inhibitor did not affect anoikis resistance or growth in soft agar. Thus, while important for Ras transformation of fibroblasts, PI3K may not be involved in Ras transformation of RIE-1 cells. Finally, inhibition of epidermal growth factor receptor kinase activity did not overcome Ras inhibition of anoikis, indicating that this autocrine loop essential for transformation is not involved in anoikis protection. We conclude that a PI3K- and RalGEF-independent Ras effector(s) likely cooperates with Raf to confer anoikis resistance upon RIE-1 cells, thus underscoring the complex nature by which Ras transforms cells.
منابع مشابه
Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation.
Substantial evidence supports a critical role for the activation of the Raf-1/MEK/mitogen-activated protein kinase pathway in oncogenic Ras-mediated transformation. For example, dominant negative mutants of Raf-1, MEK, and mitogen-activated protein kinase all inhibit Ras transformation. Furthermore, the observation that plasma membrane-localized Raf-1 exhibits the same transforming potency as o...
متن کاملInvolvement of Ras activation in human breast cancer cell signaling, invasion, and anoikis.
Although mutated forms of ras are not associated with the majority of breast cancers (<5%), there is considerable experimental evidence that hyperactive Ras can promote breast cancer growth and development. Therefore, we determined whether Ras and Ras-responsive signaling pathways were activated persistently in nine widely studied human breast cancer cell lines. Although only two of the lines h...
متن کاملActivated ras Prevents Downregulation of Bcl-X L Triggered by Detachment from the Extracellular Matrix: A Mechanism of ras -induced Resistance to Anoikis in Intestinal Epithelial Cells
Detachment of epithelial cells from the extracellular matrix (ECM) results in a form of apoptosis often referred to as anoikis. Transformation of intestinal epithelial cells by oncogenic ras leads to resistance to anoikis, and this resistance is required for the full manifestation of the malignant phenotype. Previously, we demonstrated that ras -induced inhibition of anoikis in intestinal epith...
متن کاملActivated ras Prevents Downregulation of Bcl-XL Triggered by Detachment from the Extracellular Matrix
Detachment of epithelial cells from the extracellular matrix (ECM) results in a form of apoptosis often referred to as anoikis. Transformation of intestinal epithelial cells by oncogenic ras leads to resistance to anoikis, and this resistance is required for the full manifestation of the malignant phenotype. Previously, we demonstrated that ras-induced inhibition of anoikis in intestinal epithe...
متن کاملReversal of the Ras-Induced Transformed Phenotype by Hr12, a Novel Ras Farnesylation Inhibitor, Is Mediated by the Mek/ERK Pathway
We have used the selective farnesylation inhibitor HR12 [cysteine-N(methyl)valine-N(cyclohexyl) glycine-methionine-O-methyl-ester] to study the role of oncogenic Ras in cytoskeletal reorganization in Ha-ras(V12)-transformed Rat1 cells (Rat1/ras). Application of HR12 resulted in complete restoration of the cytoskeleton and associated cell adhesions disrupted by oncogenic Ras. This included an in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 21 16 شماره
صفحات -
تاریخ انتشار 2001